skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yan, Runze"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a computational framework for modeling biobehavioral rhythms - the repeating cycles of physiological, psychological, social, and environmental events - from mobile and wearable data streams. The framework incorporates four main components: mobile data processing, rhythm discovery, rhythm modeling, and machine learning. We evaluate the framework with two case studies using datasets of smartphone, Fitbit, and OURA smart ring to evaluate the framework’s ability to (1) detect cyclic biobehavior, (2) model commonality and differences in rhythms of human participants in the sample datasets, and (3) predict their health and readiness status using models of biobehavioral rhythms. Our evaluation demonstrates the framework’s ability to generate new knowledge and findings through rigorous micro- and macro-level modeling of human rhythms from mobile and wearable data streams collected in the wild and using them to assess and predict different life and health outcomes. 
    more » « less
  2. This paper presents the first computational framework for modeling biobehavioral rhythms - the repeating cycles of physiological, psychological, social, and environmental events - from mobile and wearable data streams. The framework incorporates four main components: mobile data processing, rhythm discovery, rhythm modeling, and machine learning. We evaluate the framework with two case studies using datasets of smartphones, Fitbit, and OURA smart ring to evaluate the framework's ability to 1) detect cyclic biobehavioral, 2) model commonality and differences in rhythms of human participants in the sample datasets, and 3) predict their health and readiness status using models of biobehavioral rhythms. Our evaluation demonstrates the framework's ability to generate new knowledge and findings through rigorous micro-and macro-level modeling of human rhythms from mobile and wearable data streams collected in the wild and using them to assess and predict different life and health outcomes. 
    more » « less
  3. Continuous passive sensing of daily behavior from mobile devices has the potential to identify behavioral patterns associated with different aspects of human characteristics. This paper presents novel analytic approaches to extract and understand these behavioral patterns and their impact on predicting adaptive and maladaptive personality traits. Our machine learning analysis extends previous research by showing that both adaptive and maladaptive traits can be predicted from passively sensed behavior providing initial evidence for the utility of this type of data to study personality and its pathology. The analysis also provides insights into the underlying behavior patterns that link adaptive and maladaptive variants consistent with contemporary models of personality pathology. 
    more » « less
  4. Modeling biological rhythms helps understand the complex principles behind the physical and psychological abnormalities of human bodies, to plan life schedules, and avoid persisting fatigue and mood and sleep alterations due to the desynchronization of those rhythms. The first step in modeling biological rhythms is to identify their characteristics, such as cyclic periods, phases, and amplitude. However, human rhythms are susceptible to external events, which cause irregular fluctuations in waveforms and affect the characterization of each rhythm. In this paper, we present our exploratory work towards developing a computational framework for automated discovery and modeling of human rhythms. We first identify cyclic periods in time series data using three different methods and test their performance on both synthetic data and real fine-grained biological data. We observe consistent periods are detected by all three methods. We then model inner cycles within each period by identifying change points to observe fluctuations in biological data that may inform the impact of external events on human rhythms. The results provide initial insights into the design of a computational framework for discovering and modeling human rhythms. 
    more » « less